Surakav: Generating Realistic Traces for
a Strong Website Fingerprinting Defense

Jiajun Gong', Wuqi Zhang!, Charles Zhang'!, Tao Wang?2
1The Hong Kong University of Science and Technology

2Simon Fraser University
{jgongac, wzhangch, charlesz}(@cse.ust.hk, taowang(@sfu.ca

q" THE -IONG KONG
LAJ UNIVERSITY OF SCIENCE S F U

AND TECHNOLOGY SIMON FRASER
UNIVERSITY

mailto:taowang@sfu.ca

Website Fingerprinting

>

Time

Website Fingerprinting (Classification Problem)

1000 | ﬁ
Time

>

Time

—_— Voulube

T | ~

Time a

> 90% accuracy

Existing Defenses

Attack accuracy/

Defense Overhead Limitation
recall
WTF-PAD Low 80-90%
Weak protection
FRONT Low 40-70%

Limitation & Motivation

===l Unaffordable overhead

— Hard to implement

2 @ @—_—

Generative model Sending Patterns

Surakav: a new defense

D Train & Generate EEREEEEN -
"""""""""""" > EEENEEEE--
EEEEEEREN ---
Generator
Sending Patterns
' @ Guide the real sending
v
LU i [T T [T LR 1T M
Buftfer Buftfer
Client Tor

Phase 1: Generator Training

Questions:

« What pattern to mimic?

Realistic burst sequence
2 1

- close to real loadings m
i (RON) 0 BB X
- Training data is easy to get T \T/ Time
« What generative model to use? Packet Burst

Generative Adversarial Network (GAN)
- More diverse
- More realistic

Phase 1: Generator Training

Which webpage (label)?
. =
Observer (WF attacker
() Loss~ = Loss 0SS
A G D O
Generator :
+] >% —->[....] ————— >
label 2 ~ N (0,1) fake trace Real? Fake?

+ (MW---EN) —---- >

Discriminator

label real trace

Generator Performance

® Rimmer’s dataset (2017) 100 x 1000
® \Vasserstein Distance 0.9 -> 0.02
® Generated traces can fool the observer at a

90% success rate

the fake traces are statistically
close to the real ones.

Mean Burst Size
1 Ig I{)

Mean Burst Size

AN
)

Outgoing burst

X

o

o

(@))
o

0 100 200 300 400
Burst Index

After Epoch 1

N
o

o O

-60
0 100 200 300 400

Burst Index

After Epoch 500

............... | \

Incoming burst

Phase 2: Packet Regulation

® (Generate a trace T from Generator

® Send bursts of data basedon T

» Client controls the timing (t, modeled by KDE) "
Real packet

. to adjust the pattern]

E I R T | TR T T
Buffer Buftfer

Client Tor (Entry/Middle)

Dummy packet

10

Phase 2: Packet Regulation

 Burst Size Adjustment (5) @ Fake burst size

@® Real burst size

» Case 1: Send (1 — 5)bfake

Case 1 ' Case 3 -~ Case 2
» Case 2: Send (1 +0)by;,, .~ © + o—o + ® .
| ; Urst Size
» Case 3: Send b (1 = 0)bpype Dfake (1 + 0)bype

real

11

Phase 2: Packet Regulation

e Random Response (Proxy side)

0

> 50% chance to skip sending the dummy burst

» Triggered when buffered real data b,,,; =

> 50% chance to send (1 — 6)by,

12

Experiment Setup

® Open-world setting

e Crawled from Tranco list Set of sites user visits

Set of monitored sites \

/ 60,000 pages

100 pages

13

Experiment Setup

® Jest in the real Tor network
® Each defense is implemented as Pluggable Transport

e Client in Hong Kong, Entry in the US.

)
5

User

14

Surakav Performance against different attacks

Surakav-light (6 = 0.6) Surakav-heavy (0 = 0.4)

TPR (%) FPR (%) TPR (%) FPR (%)

0.85 0.02 0.01 0

11 9 3 :
DF 39 ; : 3

Tik-Tok 40 4 5 1

15

Surakav Performance comparing to other defenses

Attack Recall against different defenses
100 o7

75

50

25

16

Defense Performance

Data @ Time Compared to FRONT:
Defense ..
Overhead Overhead »42% less data overhead and a similar
FRONT 97 0 protection rate (43% -> 40% TPR)
> Similar overhead offers more robust

famaraw 12t 20 protection (43% -> 6% TPR)
Srae | s e
S Compared to Tamaraw:

urakav- g1 17

heavy »40% less data overhead and 10% less

time overhead. (13% -> 6% TPR)

17

Information Leakage Analysis

Surakav-heavy: 1.59 Tamaraw: 1.78

FRONT: 1.83

 examines the amount of information
learnt from a specific feature

ECDF

 WeFDE framework (Li et al., CCS’ 18)

Tamaraw —
Surakav-light
Surakav-heavy

0.8 5 -) Surakav leaks the least bits of information
Information Leakage (Bit) for the top 100 informative features!

18

Distribution Cost

® The trained model is ~ 3 MB.

® Suppose the model is distributed by the Tor directory servers

10 | | | |
< 0.64M —
- 8% 128M ——— -
& 2.56M
(":) 6 N 512M —
S=IE R 1 1~8 % bandwidth overhead
E .
£
ol

Update Frequency (days)

19

Summary

* Propose a strong WF defense Surakav
> Leverage a self-designed Generative Adversarial Model

> Two random mechanisms to dynamically adjust the sending patterns

Code is available at

> GAN training: https://github.com/websitefingerprinting/wfd-gan

> Implementation: https://github.com/websitefingerprinting/surakav-imp

20

https://github.com/websitefingerprinting/wfd-gan
https://github.com/websitefingerprinting/surakav-imp

