Surakav: Generating Realistic Traces for a Strong Website Fingerprinting Defense

Jiajun Gong¹, Wuqi Zhang¹, Charles Zhang¹, Tao Wang²

¹The Hong Kong University of Science and Technology

²Simon Fraser University

{jgongac, wzhangcb, charlesz}@cse.ust.hk, taowang@sfu.ca

Website Fingerprinting

Website Fingerprinting (Classification Problem)

Existing Defenses

Defense	Overhead	Attack accuracy/ recall	Limitation	
WTF-PAD	Low	80-90%	- Weak protection	
FRONT	Low	40-70%		
Walkie-Talkie	Low	At most 50%	Hard to implement	
Tamaraw	High	~10%		

Limitation & Motivation

* Tamaraw: Fixed sending pattern

Unaffordable overhead

* Walkie-Talkie: Prior knowledge of pages

Hard to implement

Generative model

Sending Patterns

Surakav: a new defense

Phase 1: Generator Training

Questions:

What pattern to mimic?

Realistic burst sequence

- close to real loadings
- Training data is easy to get
- What generative model to use?

Generative Adversarial Network (GAN)

- More diverse
- More realistic

Phase 1: Generator Training

Generator Performance

- Rimmer's dataset (2017) 100 x 1000
- Wasserstein Distance 0.9 -> 0.02
- Generated traces can fool the observer at a 90% success rate

the fake traces are statistically close to the real ones.

After Epoch 1

After Epoch 500

Phase 2: Packet Regulation

- Generate a trace T from Generator
- Send bursts of data based on T
 - ► Client controls the timing (t_o modeled by KDE)
 - ► Two mechanisms to adjust the pattern

Phase 2: Packet Regulation

- Burst Size Adjustment (δ)
 - ▶ Case 1: Send $(1 \delta)b_{fake}$
 - ► Case 2: Send $(1 + \delta)b_{fake}$
 - Case 3: Send b_{real}

Phase 2: Packet Regulation

- Random Response (Proxy side)
 - Triggered when buffered real data $b_{\it real} = 0$
 - ► 50% chance to skip sending the dummy burst
 - ▶ 50% chance to send $(1 \delta)b_{fake}$

Experiment Setup

- Open-world setting
- Crawled from Tranco list

Experiment Setup

- Test in the real Tor network
- Each defense is implemented as Pluggable Transport
- Client in Hong Kong, Entry in the US.

Surakav Performance against different attacks

	Surakav-light ($\delta = 0.6$)		Surakav-heavy ($\delta = 0.4$)	
	TPR (%)	FPR (%)	TPR (%)	FPR (%)
kFP	0.85	0.02	0.01	0
CUMUL	11	9	3	8
DF	39	6	8	3
Tik-Tok	40	4	6	1

Surakav Performance comparing to other defenses

Attack Recall against different defenses

Defense Performance

Defense	Data Overhead	Time Overhead	
FRONT	97	0	
Tamaraw	121	26	
Surakav- light	55	16	
Surakav- heavy	81	17	

Compared to FRONT:

- ► 42% less data overhead and a similar protection rate (43% -> 40% TPR)
- Similar overhead offers more robust protection (43% -> 6% TPR)

Compared to Tamaraw:

► 40% less data overhead and 10% less time overhead. (13% -> 6% TPR)

Information Leakage Analysis

Distribution Cost

- The trained model is ~ 3 MB.
- Suppose the model is distributed by the Tor directory servers

1~8 % bandwidth overhead

Summary

- Propose a strong WF defense Surakav
 - Leverage a self-designed Generative Adversarial Model
 - Two random mechanisms to dynamically adjust the sending patterns

Code is available at

- GAN training: https://github.com/websitefingerprinting/wfd-gan
- Implementation: https://github.com/websitefingerprinting/surakav-imp